Assessment of respiratory system mechanics by artificial neural networks: an exploratory study.
نویسندگان
چکیده
We evaluated 1) the performance of an artificial neural network (ANN)-based technology in assessing the respiratory system resistance (Rrs) and compliance (Crs) in a porcine model of acute lung injury and 2) the possibility of using, for ANN training, signals coming from an electrical analog (EA) of the lung. Two differently experienced ANNs were compared. One ANN (ANN(BIO)) was trained on tracings recorded at different time points after the administration of oleic acid in 10 anesthetized and paralyzed pigs during constant-flow mechanical ventilation. A second ANN (ANN(MOD)) was trained on EA simulations. Both ANNs were evaluated prospectively on data coming from four different pigs. Linear regression between ANN output and manually computed mechanics showed a regression coefficient (R) of 0.98 for both ANNs in assessing Crs. On Rrs, ANN(BIO) showed a performance expressed by R = 0.40 and ANN(MOD) by R = 0.61. These results suggest that ANNs can learn to assess the respiratory system mechanics during mechanical ventilation but that the assessment of resistance and compliance by ANNs may require different approaches.
منابع مشابه
Forecasting Industrial Production in Iran: A Comparative Study of Artificial Neural Networks and Adaptive Nero-Fuzzy Inference System
Forecasting industrial production is essential for efficient planning by managers. Although there are many statistical and mathematical methods for prediction, the use of intelligent algorithms with desirable features has made significant progress in recent years. The current study compared the accuracy of the Artificial Neural Networks (ANN) and Adaptive Nero-Fuzzy Inference System (ANFIS) app...
متن کاملEnergy Flows Modeling and Economic Evaluation of Watermelon Production in Fars Province of Iran
This study aimed to evaluate the efficiency of energy consumption and economic analysis of different watermelon cultivation systems in Fars Province of Iran. Watermelon production systems were classified into five systems, namely, custom tillage (group 1), conservation tillage (group 2), traditional planting (group3), semi mechanized planting (group 4), and mechanized planting (group 5). Data w...
متن کاملAnalysis and Modeling of Yield, CO2 Emissions, and Energy for Basil Production in Iran using Artificial Neural Networks
The present study attempts to investigate the potential relationship between input energies, performance production of greenhouse basil, and greenhouse gases emitted from this product. The data were collected from 24 greenhouses using a questionnaire and verbal interaction with farmers. Results of the study showed that the total input energy and total output energy for basil production were 119...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملLIQUEFACTION POTENTIAL ASSESSMENT USING MULTILAYER ARTIFICIAL NEURAL NETWORK
In this study, a low-cost, rapid and qualitative evaluation procedure is presented using dynamic pattern recognition analysis to assess liquefaction potential which is useful in the planning, zoning, general hazard assessment, and delineation of areas, Dynamic pattern recognition using neural networks is generally considered to be an effective tool for assessing of hazard potential on the b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 90 5 شماره
صفحات -
تاریخ انتشار 2001